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DYNAMICAL PRINCIPIES AND MATHEMATICAL METHODS AVAIIABIE FOR THE
ANALYSIS AND OPTIMIZATION OF ELECTRON TRAPPING IN AN AXIALLY
SYMMETRIC MAGNETIC CONVERTER, I

by

E. J. Schremp

1. An Approach to the Solution of the General Converter Problem
via a Certain Simplified Version of It.

In Radiation Project Internal Report No. 4,! there is included
a preliminary estimate of the range of trapping of electrons that
can be expected when a collimated, approximately mono-energetic beam
of these particles, originating from a linac, enters the time-
dependent magnetic field of a certain proposed type of magnetic
converter. In a magnetic converter of this type, the magnetic field
is purposely given a shape which possesses rotational symmetry about
an axis perpendicular to, and slightly displaced from, the central
axis of the linac beam. An additional characteristic of the magnetic
field in a converter of this type is that it possesses reflection
symmetry with respect to a plane which contains the central axis of the -
linac beam and is perpendicular to the axis of rotational symmetry
of the magnetic fileld.

In connection with the general problem of converting the kinetic
energy residing in a collimated beam of very fast electroms into
electromagnetic radiation through the trapping of these electromg in
a magnetic field, the first of the above mentioned two symmetry
properties of the electron-trapping magnetic field, that of axial

symmetry, deserves special attention™ both from the theorist and from

*
To a lesser extent, the second of these two symmetry properties, that
of reflection symmetry, also deserves special attention,




pS—

Lo

the experimentalist, because of the fact Ehat, for those types of
magnetic converter which incorporate such symmetry, and only fof such
types, an opportunity arises for the theorist to expioit certain
general dynamical principles and special mathematical methods which
lead to a vast simplification of an otherwise rather intractable

problem: namely, that of analyzing, and securing a sufficiently

comprehensive understanding of, the orbital motions of the electrons

coming from the linac, once they enter the magnetiec field of the
converter. The principal purpose of the following discussion will
therefore be to call attention to those general dynamical principles
and special mathematical methods which are particularly suitable for
use in solving the specific dyﬁamical problem that one is faced with
when one attempts to analyze and to optimize the trapping of

electrons in an axially symmetric magnetic converter,

Strictly speaking, these simplifying dynamical principles and
mathematical methods are applicable only to a certain well-defined
gimplified version of this actual dynamical problem, in which one
temporarily neglects the effects of (a) the time dependence of the
magnetic field, (b) the damping force on the electrons due to the
emission of electromagnetic radiation from them, and (¢) the mutual
forces between electrons associated with space charge. However,
to whatever extent may be necessary, all of these complicating effects

can be incorporated afterwards with relative ease, as small pertur-

bations to an already very informative and comprehensive body of

approximate results, obtalned first, at a minimum cost of time and

effort, by solving this simplified version of the actual problem.

For the most part, the present report will be confined to the
treatment of this simplified version of the problem. In a later
report, we hope to show how our present results, when taken in
conjunction with certain necessary small perturbations of the above
kinds, will lead to various practical suggestions for optimizing the
design of a magnetic converter of the general type under consideration

here.,
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2. Precise Definition of the Simplified Version of the Problem.

When, in the above mentioned simplified version of our dynamical
problem, the equations of motion of an individual electron in the
presence of the magnetic field of the converter are expressed in
Lagrangian form, these equations find thelr most suitable expression
in terms of the following set of cylindrical coordinates: the
normal distance r of the electron from the polar axis (i.e., the axis
of rotational symmetry) of the magnetic field; the normal distance z
of the electron from the equatorial plane (i.e., the plane with

- respect to which there is reflection symmetry) of the magnetic field;
“and the longitude angle ¢ of the electron's meridian plame (i.e., the

plane containing both the electron and the polar axis). The
corresponding set of right-handed cartesian coordinates are then the

quantities

-
It

r cos @, (1la)
r sin o, (1b)

«
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and z; and the origin O of these cartesian coordinates %, vy, z is the
center of symmetry of the magnetic field. The polar axis of the magnetic
field is evidently the z-axis; and distances z are reckoned as positive
for points above, and negative for points below, the equatorial plane. -
The longitude angle v, which in general could be measured relatively

to any arbitrary fixed meridian plane, will here be defined, for
convenience, by taking the positive y-axis to have the same direction
and sense as does the linac beam. The x-~axis then intersects normslly

the central axis of the linac beam.

For the simplified version of our dynamical problem that has been
specified above, the Lagrangian equations of motion of an individual

electron are then of the form

(¢/de) (3L/3d,) - (3L/3q,) = O, (1 =1,2,3) (2)




where q,=r, g-=z, qa=w, and the dot indicates total differentiation
with respect to the time t. Here, the Lagrangian L is the
appropriate one for a system congisting of an electron of rest mass
m. and (negative) charge e, with instantaneous velocity 3, subject to

0
no forces other than those arising from a time-independent magnetic

— field possessing the two symmetry properties previcusly mentioned.

In the case of a general external electromagnetic field, with
-5
vector potential A and scalar potential &, the appropriate form of

the lLagrangian L would be
] P o\E 3 .
L = -myc (1-B=)* + (e/c)(A+v) - eb, (3)

" where ¢ is the speed of light, B=v/e, and v=|3|. Since the electric
field is zero in the present simplified version of our dynamical
_»«f problem, we must here set $=0; and thus we need compute expressions

only for the two quantities Xand ¥ in Eq. (3). Owing to the axial

symmetry of the magnetic field in our particular problem,* the
i vector potential K, when resolved along the three orthogonal unit
vectors e, e_, ecp at any point, has compoments (0, O, A ); while the
-+ .
patrticle velocity v, when similarly resolved, has components (£, z, r9).

o Accordingly, the appropriate Lagrangian for the present simplified

version of our dynamical problem is

1 = -mocg(l-ﬂa)% + (e/c)(r@Am). (L)

: # '
- Since the existence of a nonvanishing @-component of the electron-
trapping magnetic field would constitute an unnecessary complication,
we are assuming bere that this component is everywhere zero.




3., Angular Momentum and Energy Integrals for the Simplified Version
of the Prcblem. _ ' .

An additional consequence which follows from our assumption of
axial symmetry of the magnetic field is that ACP in Eq. {4) is
independent of the longitude angle @. It is thus seen from Eq. (k)
that the coordinate @ does not appear explicitly in the Lagrangian L
for the present simplified version of our dynmamical problem.-
Therefore we obtain immediately an integral of the motion from the

equation of motion corresponding to the coordinate o:

(d/dt) (3L/3p) = (dL/d9) = O, . (5)
or
(d/dt)ptp =0, (6)
where
p(P = mraé + (e/c)rAcp ‘ (7)
and where

wjH

m = m/(1-6°) (8)

is the relativistic mass of the particle. This first integral of the

motion expresses the fact that there is comservation of the g-component

of generalized angular momentum pw, conjugate to the ignorable coordinate o.

Upon definition of the Hamiltonian H for the present simplified

version of our problem as

H=-L+ § d; (3L/34,) (9)




and upon use of the eQuatioﬁs of motion and the assumption that the
time t does not enter explicitly into the Lagrangian L, it follows.

that there is conservation of energy:

dH/dt = -3L/3at = O, | T (10)

Accordingly, an energy integral exists, as follows: .

(d/dt)H = 0O, L _-(11)
where
H = m2. - (12)

It is clear that v and m are thereby constant for the present

simplified version of ocur problem.

k., Reduction of the Simplified Version of the Problem to a Dynamical
Problem of Two Degrees of Freedom.

Following the procedure introduced in Radiation.Pfoject Progréss

Report No. 3,2 let us now define a function ¥(r,z) such that

Y=rA; (13)

and let us also define a constant YO such that

- (efe)¥y. (14)




Then Eq. (7) may be re-expressed in the form

mrZg = (efc) (¥,-¥) . (15)

On dividing Eq. (15) through by the constant quantity mv, one
obtains the equation

rZ(dg/ds) = (¥,-¥)/p, (16)
where
p = mvc/e (17)

is the so-called rigidity of the particle, and where

(ds/dt)® = v® = 2 + 3% + 1242, (18)

the new independent variable s being the arc length measured along

an orbit, It is seen that Eq. (1l6) describes the motion of the

meridian plane containing the particle, for specified values of the

rigidity p of the particle and of its angular momentum at infinity,
p@=(e/c)?o, about the polar axis of the magnetic field,

From Eq. (18) it follows that
(dr/ds)® + (dz/ds)?® + r®(dp/de)? = 1, | (19)
If we now write

Q = (dr/ds)® + (dz/ds)Z, (20)
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then we find from Eq. (19).that
Q =1 - r®(dp/ds)?; .“ ;EIJI_
and hence we have from Eq. (16) the result that
Q= 1- (¥, (e0)

On comparing Eqs. (20) and (22), we now observe that there are two
equivalent ways in which it is possible to express the derivative of

Q with respect to s, namely:

dqQ/ds = 2(dr/ds)(d®r/ds?) + 2(dz/ds) (d®z/ds?) (23)
and
do/ds = (3Q/3r)(dr/ds) + (3Q/3z)(dz/ds), (24)
the latter way being made possible through the explicit functional

dependence of Q upon r and z, as specified in Eq, (22). It follows,
therefore, that the following pair of equations must hold:

d®r/ds® = #(Q/ar), -~ (25a)
d%z/ds? = %(3Q/3z) . : (25b)

Now the position of the particle in its own meridian plane is

defined by the rectangular coordinates r and z; and therefore we




i see, from Eqs. (25), that the motion of the particle in its own

meridian plane is exactly the same as if the particle were moving

under the influence of a potential -Q/2, where Q is given by

Bq. (22) for specified values of the rigidity p of the particle

and of its angular momentum at infinity, p = (e/c)¥. , about the
T —{r

polar axis of the magnetic field.

— Thus, for any specified values of the rigidity p and of the
angular momentum at infinity, pcp = (e/c)?O, the problem of determining

the corresponding particle orbits has been shown to have been resolved

LU

into the following twe problems: first, that of determining the
motion of the meridian plane containing the particle; and second,

that of determining the motion of the particle in its own meridian

..... plane. The solution of the first problem merely requires the inte-
gration of Eq. (16); while the solution of the second problem requires
1 the integration of Eqs. (25), with the potential -Q/2 defined by

Eq. (22). It is this second problem -- a dynamical problem of two

S degrees of freedom -- which will be of primary interest to us in

what follows.

5. Allowed and Forbidden Regions of a Particle for the Simplified
Verslion of the Problem.

We now have reached the point where it will become quite
evident how considerable the advantages are which accrue from the
initial requirement that the electron-trapping magnetic field
possess certain definite symmetry properties, and from the further

decision to meglect, temporarily, the three small complicating

effects of space charge, of radiation by the electrons, and of the
time-dependence of the magnetic field. Principal among these
advantages is the fact that, for the resulting simplified version

of our dynamical problem, the exact equations of motion can be used

to draw some general conclusions about the confinement of electrons

in the magnetic field of the converter. For a magnetic field
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possessing the previously assumed degree of symmetry, iﬁ is
possible very easily to determine certain forbidden regions of a

particle, even without knowing the detailed solution of its orbit.

Thus, for whatever values of r and z the function Q{(r,z) defined
by Eq. (22) becomes negative, we know from Eq. (20) that dr/ds, or
dz/ds, or both, will take on imaginary values. In other words, the

locus of points in the meridian plane defined by the equation

Q(r,z) =0 (26)

gseparates the meridian plane into two types of region: allowed
regions for the motion of a particle, for which Q{r,z)Z0; and

forbidden regions for the motion of a particle, for which

Q(r,2z)<0. From the explicit form of Eq. (22), we see that the
boundary curves in the meridian plane which separate the allowed
regions from the forbidden regions satisfy one or the other of the

two equations
¥ = TO + pr. (27)

Now it will be recalled from Eq. (13) that the functionm
¥(r,z) serves to specify completely the magnetic field of the
converter) and it is clear that this function can be assumed to be
completely known® for a magnetic converter of any given'specific
design and of the general type under consideration here. Accordingly,
the determination of the boundary curves defined by Eqs. (27) is seen
to be a very straightforward and simple matter: one has only to
consider the single general surface ¥(r,z), erected in the épaceZWith

coordinates r,z,¥, in conjunction with the two planes

Y:t(r).'g YO i pr, (28)

erected in the same space}; and one them has only to look for the locus

10




of points with coordinates (r,z) in the r-z plane whiéh.cbrreSPcnd
(under orthogonal projection upon that plane) to points of - _
intersection of the general surface ¥(r,z) with one or the other-

of these two planes ?+(r)n

Not only is it an extremely simple matter to determine these
boundary curves for a particle of given rigidity p and of given
angular momentum ptp = (e/c)?o; but also it is particularly eésyﬂ
to follow the changes that occur in the forms of these boundary
curves, as the rigidity p and the angular momentum Py = (e/c)
of the particle are varied: one then has only to change the
(equal and opposite) slopes + p and the (equal) intercepts Y
of the two planes ¥ (r), in a2 systematic manner, and ome can then
obtain a completely comprehensive understanding of the allowed -
and forbidden reglons of a particle, simply from a knowledge of the
detailed shape of the known magnetic field function ¥(r,z).

6. Circular Orbits in the Simplified Version of the Problem, and
Orbits Asymptotic to Them,

We turn now to a consideration of the important question concerning

the exlstence of circular orbits in the.simplified version of our

dynamical problem, and of orbits asymptotic to them. As we shall

presently see, a knowledge of the existence and nature of these orbits
will be indispensable to us, first, in sysﬁematizing our génerél
understanding of this dynamical problem, and, second, in enabling us
to exploit these systematized results by applying them to the problem

of optimizing the design of a magnétic converter,
It is easy to see that, in genefal, a clrcular orbit, if it
exists for a given magnetic field possessing the previously mentioned

symmetry properties, must satisfy the three equations

r=1_, | - (29a)

11
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sz, ..- 7“(29b)'

e <11, e

where ro and zo are constants. Now the first two of these

equations evidently imply also the equations
dr/ds = dz/ds = d®r/ds® = d®z/ds® = 03 ‘.'. o (30)

and hence, as may be seen from Eqs. (20) and (25), they further
imply the equations | :

= R/t = N/3z =0. - ERC Y

According to Eq. (26), therefore, for gxggx circular orbit that isr
found to exist, the corresponding peint with goordinates fré,z')

in any meridian plane must lie on one of the boundary curves in that-
meridian plane which separate the allowed regiOns fcr the-m§tioh'of

a particle from the forbidden regions.

But, more than this, we also see from the last tﬁo of Eqs. (31)
that every circular orbit is further characterized by the fact that -

the corresponding point with coordinates (r 1% ) in the meridian plane

is a critical point® of the function Q(r, z), i e., either it g a

point at which the function Q(r,z) attains a relative_maximum or
minimum value, or else it is a saddle point of the function Q(x,z).
Now, at any such critical point, as has just been expressed in the
first of Eqs. (31), the value of the function Q(r,z) must be zero,
Therefore, if at this critical point the function Q(r,z) attains'é;'
relative maximum or minimum value, the corresponding boundary curve
between allowed and forbidden regions on which this critical point._ 
lies is then just a degenerate locus consisting of only ome pbint.
1f, on the other hand, this critical point 1s a saddle poiﬁt'of_the

function Q{r,z), then it must be a point of intersectibn'between

12
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two ﬁondegenerate continuous boundary cﬁrves, each of which separates
allowed from forbidden regions; This latter situation, in its most

general form, is shown schematically in Fig. 1.

Now in all situations of the latter kind, the circular orbit in
question is unstable; and a characteristic feature of this kind of
unstable circular orbit is the concomitant existence of two distinct
families of orbits which are asymptotic to each such circular orbit,
cne of these two families of asymptotic orbits being confined to one
of the two allowed regions shown schematically in Fig. 1, and the
other family being confined to the other allowed region. This
characteristic feature of unstable circular orbits of this kind
constitutes the first example of certain fundamental results which
are to be drawn, here and in the sequel, from that relatively
unfamiliar discipline in dypamics which is known as the "general

theory of orbits™.* Tt is, however, a feature which, together with

certain generalizations of it, we shall find to be most useful in

connection with the problem of optimizing the design of a magnetic

converter,

In Radiation Project Internal Report No, 4,1 this particular
kind of unstable circular orbit has already been introduced (on the
basis of somewhat different, but essentially equivalent,
considerations) ag the fundamental element of a proposed practical
method for the trapping of electrons whose motion is confined to the
equatorial plane. In this case, the circular orbit 'in question is
{tself located in the equatorial plane (zo=0), and thefgeneraln\
situation shown in Fig. 1 reduces to the special situation shown
échematically in Fig. 2.

13
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